If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2-196x+196=0
a = 15; b = -196; c = +196;
Δ = b2-4ac
Δ = -1962-4·15·196
Δ = 26656
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{26656}=\sqrt{784*34}=\sqrt{784}*\sqrt{34}=28\sqrt{34}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-196)-28\sqrt{34}}{2*15}=\frac{196-28\sqrt{34}}{30} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-196)+28\sqrt{34}}{2*15}=\frac{196+28\sqrt{34}}{30} $
| (6+2x)(4x)/2=60 | | 2b-56=b | | 4/5b=-20 | | X+(x/4)=120 | | 5x−8=2x+1 | | -5c-1=20c+49 | | 2b=7b-50 | | 5x–14=8x+4 | | 19=-7f+2f | | 11n-1=90 | | 7c+9=4c+51 | | 2(a-3)+5=4-3a | | 4s+98=8s+82 | | (90-x)/(180-x)=2/5 | | 13x=8+12x | | (x-5)^2=121 | | (x-69.9)/3=1.3 | | 9a-88=a | | 13x-12+8=12x | | 16x-7x=9 | | -6m=20+m | | 3(x-3)(x-7)=4(x+3) | | (x+4)·(2x-3)=0 | | 2t-6+t=180 | | 5/6=(w-5)/4 | | 5(3w+4)=8 | | 31+8z=4(6-7) | | 97=4r+9 | | 2c+11=c+15 | | x²+2x=40 | | 10=6+4v | | g/2=18=22 |